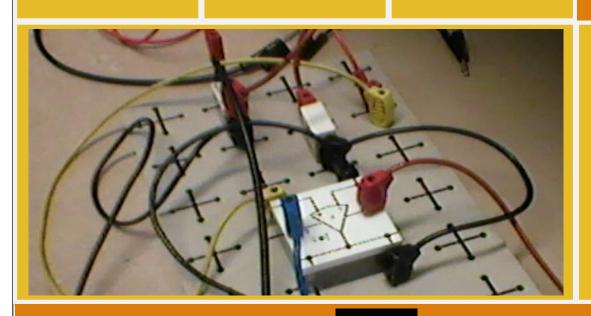
je corrote


GBAKI DE TP DE SCIENCES PHYSIQUES

REDACTION REVUE ET CORRIGEE

DEGRE NEWTON

MPSI

DUNOD

GBAKI DE TP DE SCIENCES PHYSIQUES

MPSI

GBAKI DE TP DE SCIENCES PHYSIQUES

MPSI

DEGRE NEWTON

DUNOD

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » [art. L. 122-4].

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

© Dunod, Paris, 2008 ISBN 978-2-10-053973-4

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

bito, le developement niussif de photocopillage. Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelans donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

AVANT-PROPOS

Les classes préparatoires technologiques MP*-MPSI, le label prestige, forme la crème de l'industrie. Intégré au programme, le cours de sciences physiques est chargé d'apporter non seulement un bon niveau d'études théoriques mais aussi des connaissances pratiques à l'éclosion de l'esprit et à un meilleur intellect. Les travaux pratiques de sciences physiques permettent donc à chaque étudiant d'être confronté à un problème auquel il trouvera des solutions.

L'AUTEUR

TABLE DES MATIERES

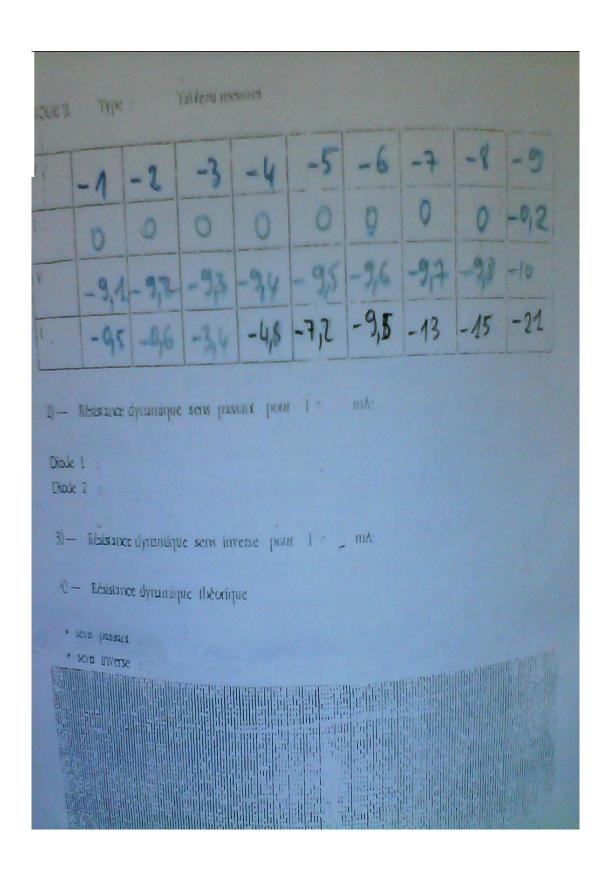
INTRODUCTION

TP N°1	DIODE0	9
TP N°2	GENERATEUR DE THEVENIN1	2
TP N°3	CUVE RHEOROGRAPHIQUE1	.7
TP N°4	AMPLIFICATEUR OPERATIONEL2	!2
TP N°5	CIRCUIT RLC	.26

CONCLUSION

INTRODUCTION

Les travaux pratiques de Sciences Physiques font partie intégrante du programme des classes préparatoires technologiques. Ainsi en classe préparatoire, chaque élève aura à passer deux heures par semaines pendant au moins deux ans en salles de TP.


C'est donc pour cela que nous avons compilé des informations sur les travaux pratiques en vue de faciliter votre compréhension. Nous espérons que ce document vous aidera dans la bonne exécution de vos différents TP.

TP N°1

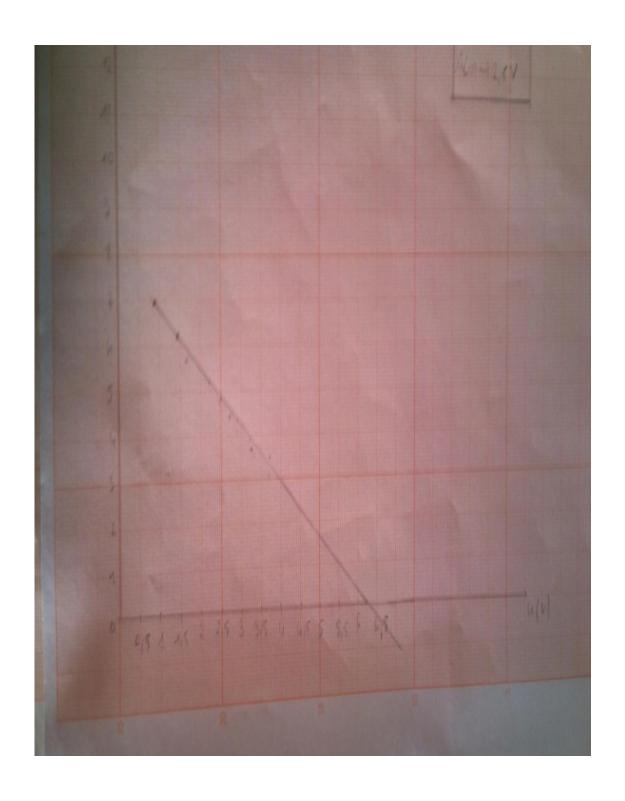
DIODE

4° Tri : 1.			TEL	JILLE	de F	RESUL	TATS							
NOMS	BOKPAKA MINOUCHELC													
Date: 46 - 04 - 2012 1) — a) Jonetion polarisée seus passair. Courte expanditables DIODE 1 Type: Talleau mesures														
V	v lo los los los los los los los los los													
(V)	0													
	0,55													
1 (ma)			4		6			9,6						
	Турк		Tableau in	czmcz										
V 600	0	0.58	0.60	0,61	0,63	0,62	0.50	0,65						
(V)					_	99								
The second second second								0,78						
(ma)		1,7				5,6		7						
ь). Jonaion	poliuisée	SCUS HIVE	ise. Dees	e swari	histiger								
	Турс													
Y 101	0	0,58	0,60	0,61	0,63	0,64	0,64	0,65						
(ma)	0			0			0							
V (V)	0,66	orte	0,67	0,68	0.6	3 0,40	7,3	1 0,78						
(AMP)	0	0	0	0	: 0	. 0	10	0						

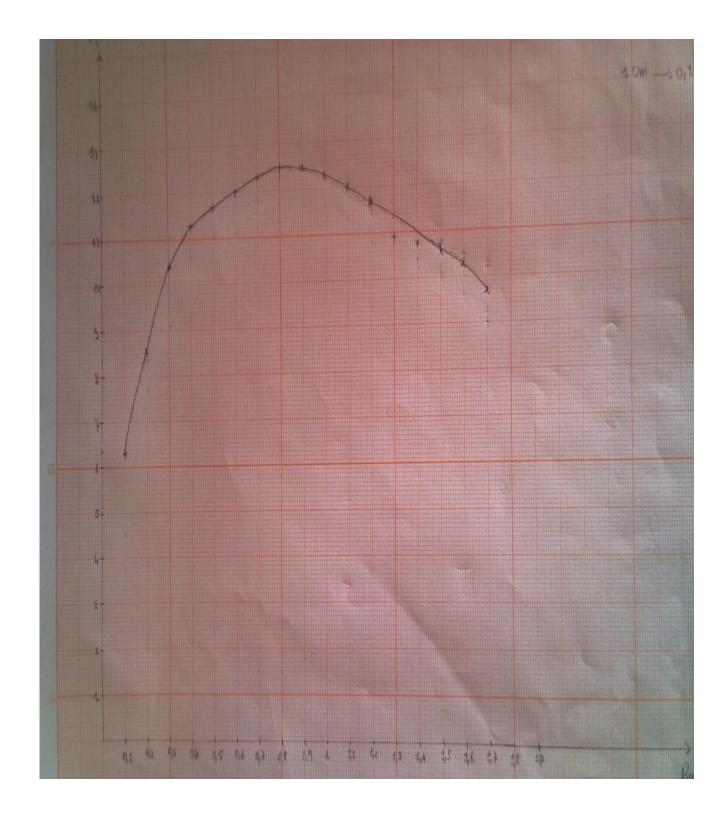
FICHE RECTO DIODE

FICHE VERSO DIODE

TP N°2

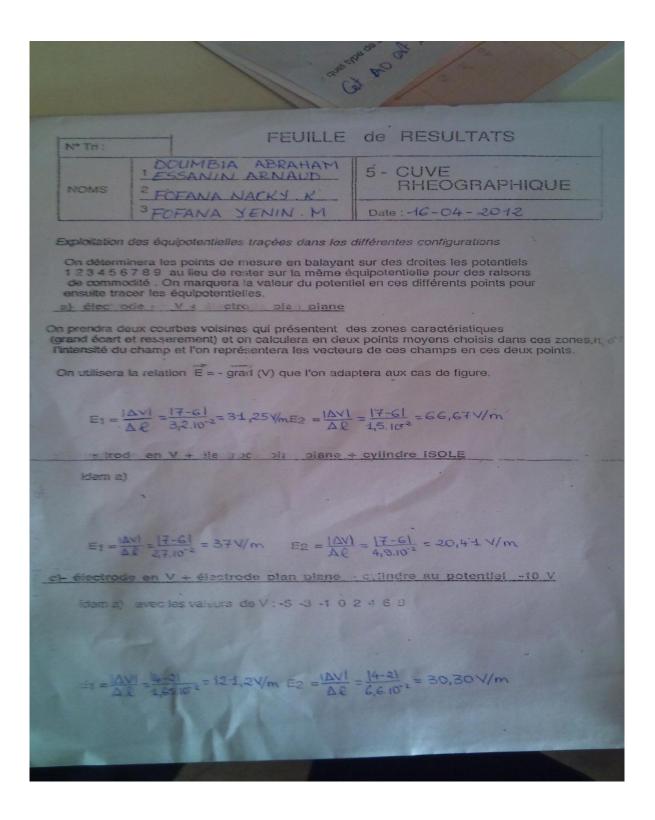

GENERATEUR DE THEVENIN

CLASSE A	BCD	Exercises a si	DE RESULTATS
		FEUILLE	DE RESULIAN
BINOME			
NOMS	1. DELI GU 2. COUMUUE 3.	YES STETHENS	6. CARACTERIST D'UN GENERATI
		E THEVEND	N
	ions littéra es :		
$E_{TH} = \left(\frac{R_2}{R_2}\right)$	+R3 - R++R4)	- R ₂₁₀ =	Rocky + Rocks Rocky Rocks
	numériques.		757, 95 0 \$ 57
$E_{TH}=6,3$	5 V a 13%	fres Res	751, 35 00 20 0
1.3 Valeur	s expérimental	5	
Méthodes	de mesures de	ETH OF PLANT	
Méthodes	de mesures de	Erm et Man a	
Méthodes	de mesures de	Eve et Mass s	
	de mesures de		= 756 W
Méthodes $E_{TH} = 6$	de mesures de		= 756 OL
$E_{TH} = \delta_j$	de mesures de	Roma	
$E_{TH} = \delta_j$	de mesures de	Roma	
$E_{TH} = 6$ Conclusion	de mesures de	laignes et a	
$E_{TH} = 6$ Conclusion	de mesures de	laignes et a	e 756 er
$E_{TH} = 6$ Conclusion	de mesures de	loriques et e	n feriment aux
Conclusion Les Res pensi	3V wellado the	loriques et e	
$E_{TH} = 6$ Conclusion	3V wellado the	loriques et e	n feriment aux
Conclusion Les res rensi	3V well als the blement	loriques et e	nferiment ann
Conclusion Les res rensi	3V well als the blement	loriques et e	n feriment aux
Conclusion Les Res pensi	3V well als the blement	loriques et e	nferiment ann
Conclusion Les res rensi	3V well als the blement	loriques et e	nferiment ann
Conclusion Les res rensi	3V well als the blement	loriques et e	nferiment ann
Conclusion for the sensi	3V well als the blement	loriques et e	nferiment ann


FICHE RECTO THEVENIN

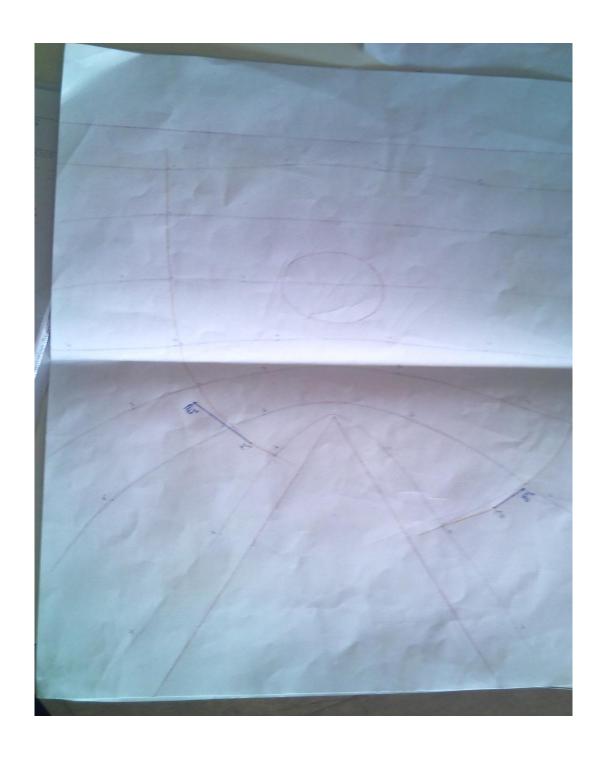
					A War	T A T	re-va	J. Di	: 121	IISS	ANC	TF.		
2. CARACTER							101							
Ru 0,1 0,2 0 (kΩ)	0,3 0,4	0,5 0,6	0,7	0,3	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	
U 0/85 4,35 ±														
(mA) 6,7 6,2	5,5 5,15	4,7 4,3	4,2	3,8	3,6	3,4	3,2	3	2,8	2,7	5,6	2,5	2,4	
P 1/2/021	1945 11,33	13 15 12,0	1133	1354	1324	12,11	11,86	1139	1992	10,8	1966	195	1032	+
(mW) 8,36 (mW)	1		1				7							
- Zaindre le	To indee the couples $I = f(I)$ of $P = f(R)$.													
	Joindre les courbes I = f(U) et P = f(R). Déterminer graphiquement les elements du genéraleurs.													
Determin	ergraph	rqueine	ntle	s ele	anei									
V = 6,3 V							21	Rint	= 7	56,8	5	2		
- Détermina	ation du	point c	le for	netie	nne	mer	it Q	pou	r Ru	= 1	kΩ			
							-			2		V		
$I_Q = 3.4 \text{ mA}$								V	Q =	3, 6				
Q1	3,6V; 3,6	4mA)												
- Adaptatio			réali	isée	poui									
R = 0 0,8	Ke		a	600				10.3%				7		
148								~			3	,		
CONCLUSION						,								
							d		32	4			-	
														1
	BY SKI	THE REAL PROPERTY.				114	160				-	- 10	WAR.	

FICHE VERSO THEVENIN


COURBE DE L'INTENSITE EN FONCTION DE LA TENSION

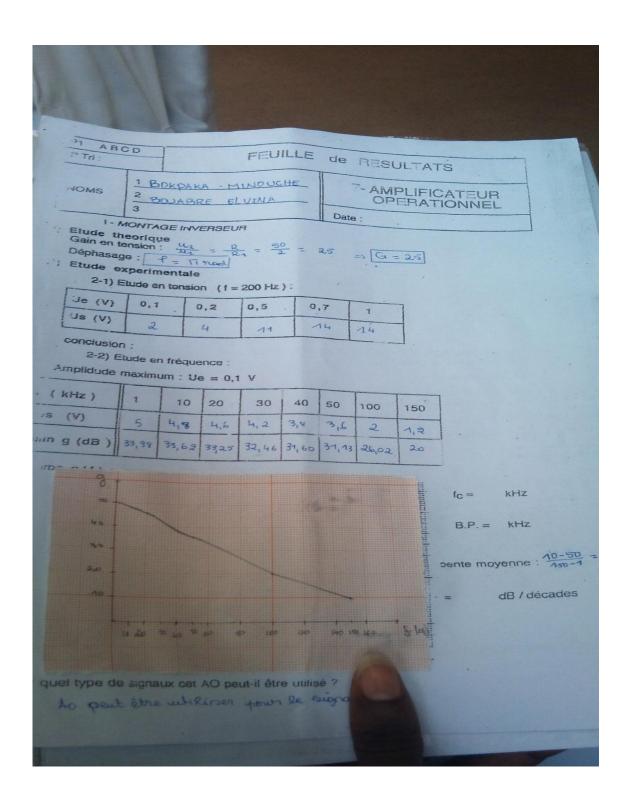

COURBE DE LA PUISSANCE EN FONCTION DE LA FREQUENCE

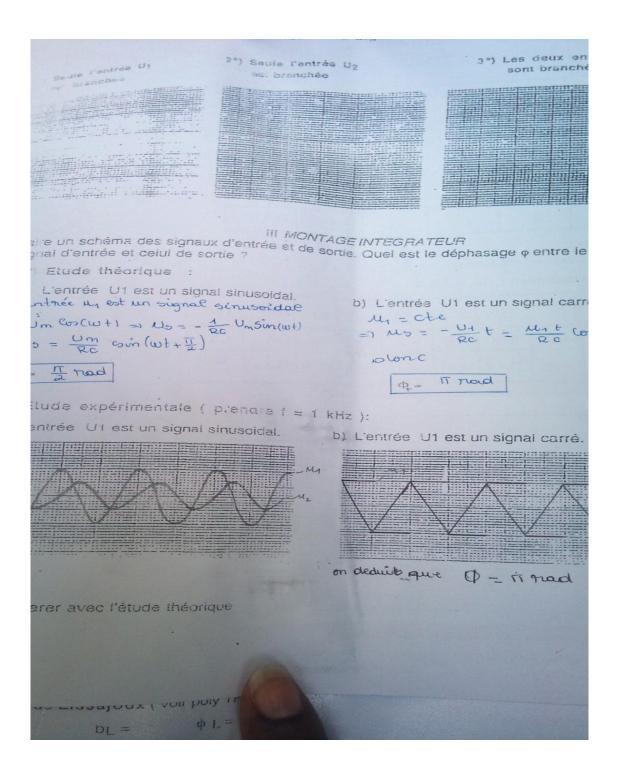
TP N°3


CUVE RHEOROGRAPHIQUE

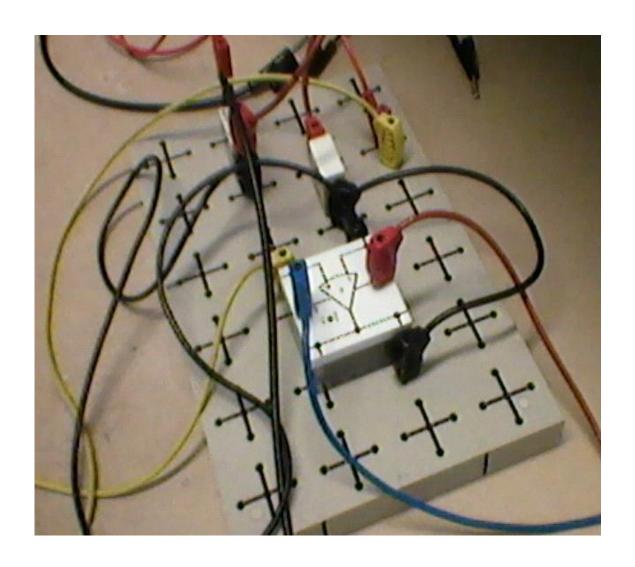
FICHE REPONSE CUVE RHEOROGRAPHIQUE

V + ELECTRODE PLANE


V + ELECTRODE PLANE + CYLINDRE ISOLE

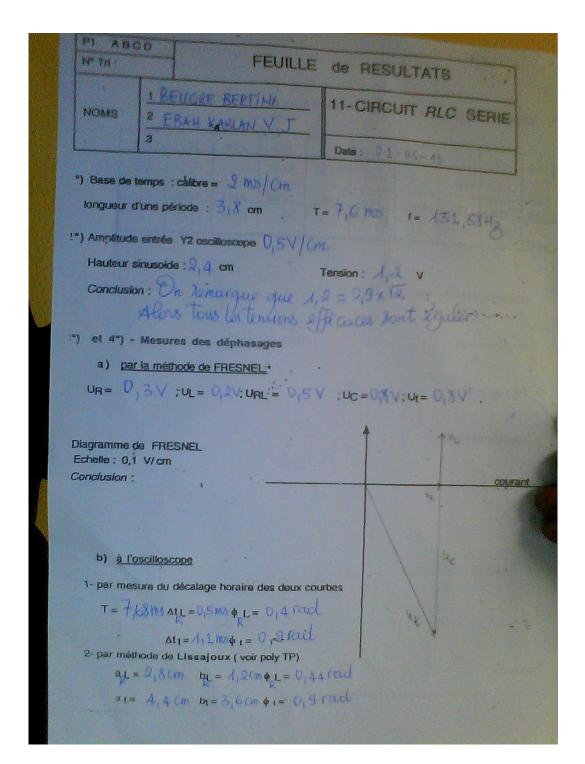

<u>V + ELECTRODE PLANE + CYLINDRE AU</u> <u>POTENTIEL - 10V</u>

TP N°4


AMPLIFICATEUR OPERATIONEL

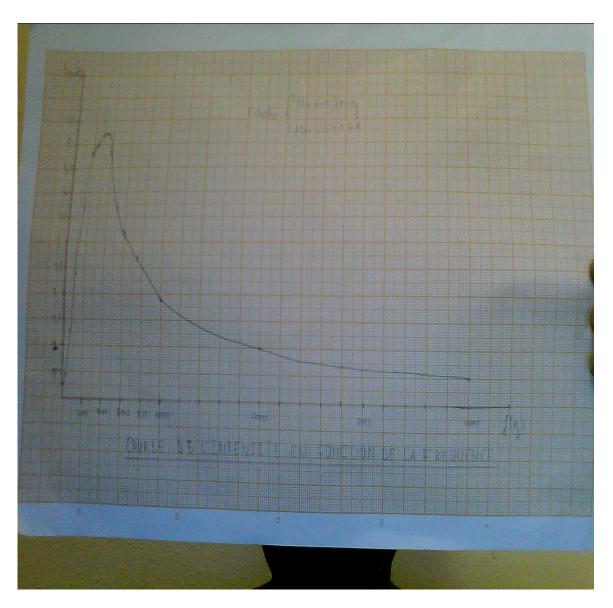
FICHE RECTO AO

FICHE VERSO AO

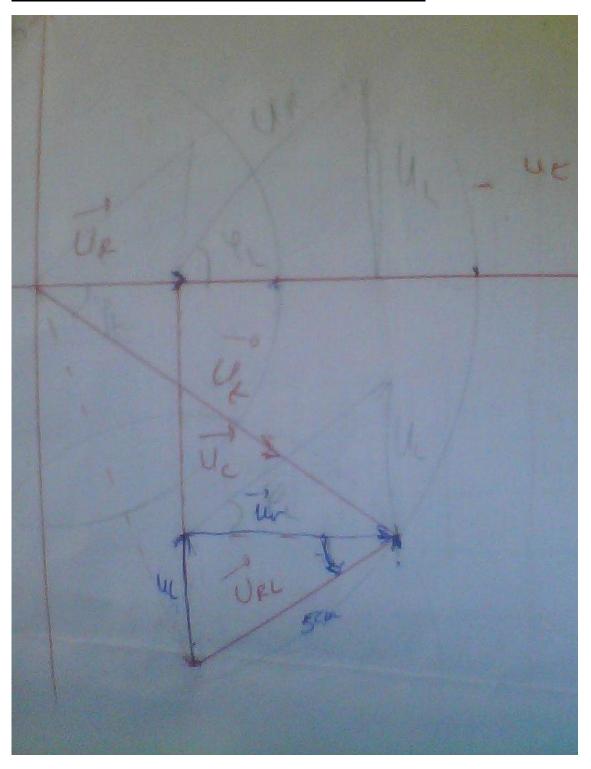

MONTAGE AO

TP N°5

CIRCUIT RLC


MONTAGE RLC

FICHE RECTO RLC


				Metalia e	Oristorne	la teresion	dentica	du circu	11
1 (mA) 1 (mA)	10 0,25 400 4 ₁ 8	25 0,46 500 3,7	50 4,3 600 3,2	100 2,4 750 2,7	150 3,7 1000 1,9	200 4.8 2000	250 50 3000 0,7	360 5,2 4000 0,5	110
F	rèquence	de résor	iance ;	973,2	1915				
	Bande pas	ltre :	Pass I				781		
	Fonction	de transfe	n: H	$=\frac{1}{1+}$ $=\frac{R}{R+\Gamma}$	16 (W) d (W) et (W)	(a) (a) (b) = c)	(R+1°)	R+C	
	Fréquenc					. = 0.7	X1		
Conclu	UR = 0,4 usion: tuire des 0		écultats le $C=G_1$ t		de C. Let				

FICHE VERSO RLC

COURBE DE L'INTENSITE EN FONCTION DE LA FREQUENCE

REPRESENTATION DE FRESNEL

Conclusion

Voici en quelques sortes ce que nous avons pus collecter pour constituer ce gbaki. Nous espérons que vous l'augmenterez aussi pour la génération future.

ISBN 978-2-10-053973-4

www.dunod.com

